Technology

[Technology][grids]

Mobiles and Laptops

[Mobiles and Laptops][grids]

Management

[Management][grids]

Education

[Education][grids]

Lifestyle

[Lifestyle][grids]

Currencies and Gold

[Currencies and Gold][grids]

Other Articles

[Other Articles][grids]

Travel

[Travel][grids]

Experiments with a Single Factor - Problems solution




Experiments with a Single Factor 



1.      A pharmaceutical manufacturer wants to investigate the bioactivity of a new drug.
A completely randomized single-factor experiment was conducted with three dosage levels, and the following results were obtained.





a.       Is there evidence to indicate that dosage level affects bioactivity? Use α = 0.05.  (Conduct the analysis by hand and then verify the answer by Minitab.
b.      If it is appropriate to do so, make comparisons between the pairs of means. What conclusions can you draw?
c.       Analyze the residuals from this experiment and comment on model adequacy.

 Solution:
a)  Is there evidence to indicate that dosage level affects bioactivity? Use α = 0.05.  (Conduct the analysis by hand and then verify the answer by Minitab.

We will use the analysis of variance to test
Null hypothesis         H0  :   µ1 = µ= µ3           All means are equal
Alternative hypothesis    H1  :   µ1 ≠ µ≠ µ3            Not all means are equal


Using Minitab:




ANOVA: Observations versus Dosage

Factor  Type    Levels  Values
Dosage  random       3  20g, 30g, 40g


Analysis of Variance for Observations

Source  DF      SS      MS     F      P
Dosage   2  450.67  225.33  7.04  0.014
Error    9  2 88.25   32.03
Total   11  738.92

F0.05,2,9 =   4.256          for α = 0.05

Then   F0  (7.04) > F0.05,2,9  (4.256 )
 So we will accept the alternative hypnosis H1
And there is a difference and evidence affected by dosage level.


b) If it is appropriate to do so, make comparisons between the pairs of means. What conclusions can you draw?

Comparisons between the pairs of means.
Using Tukey’s Test:
Equal variances were assumed for the analysis.



 q0.05( p, f )  = q0.05( 3, 9 )  =   3.95     from Percentage Points of the Studentized Range Statistic






Thus, any pairs of treatment averages that differ in absolute value by more than 11.1775 would imply that the corresponding pair of population means are significantly different.

The differences in averages are:








Then from Tukey’s Test for pairs comparison we find that the pair of dosage 20 g and 40 g is the most effective.


using Minitab:

Model Summary

S = 5.65931   R-Sq = 60.99%   R-Sq(adj) = 52.32%    R-sq(pred)= 30.65%


Dosage  N   Mean  StDev      95% CI
20g     4  29.75   5.44  (23.35, 36.15)
30g     4  36.75   5.44  (30.35, 43.15)
40g     4  44.75   6.08  (38.35, 51.15)

Pooled StDev = 5.65931


Tukey Pairwise Comparisons

Grouping Information Using the Tukey Method and 95% Confidence

Dosage  N   Mean  Grouping
40g     4  44.75  A
30g     4  36.75  A B
20g     4  29.75    B

Tukey Simultaneous Tests for Differences of Means

Difference  Difference       SE of                           Adjusted
of Levels     of Means  Difference      95% CI      T-Value   P-Value
30g - 20g         7.00        4.00  (-4.18, 18.18)     1.75     0.240
40g - 20g        15.00        4.00  ( 3.82, 26.18)     3.75     0.011
40g - 30g         8.00        4.00  (-3.18, 19.18)     2.00     0.168

Individual confidence level = 97.91%



c) Analyze the residuals from this experiment and comment on model adequacy.





Compute the residuals for each observation:
eij  = yij  - 𝑦 ̅i.
ӯ1.
ӯ2.
ӯ3.
29.75
36.75
44.75

20g
20gresiduals
30g
30gresiduals
40g
40gresiduals
1
24
-5.75
37
0.25
42
-2.75
2
28
-1.75
44
7.25
47
2.25
3
37
7.25
31
-5.75
52
7.25
4
30
0.25
35
-1.75
38
-6.75

the central values closely fit a straight line, the errors are normally distributed and the model is adequate.
------------------------------------------------------------------

2.      Four chemists are asked to determine the percentage of methyl alcohol in a certain chemical compound. Each chemist makes three determinations, and the results are the following:



                                 
a.       Do chemists differ significantly? Use α = 0.05.
b.      Analyze the residuals from this experiment.
c.       If chemist 2 is a new employee, construct a meaningful set of orthogonal contrasts that might have been useful at the start of the experiment.

Solution:
a)  Do chemists differ significantly? Use α = 0.05.


Using Minitab:


ANOVA:


Factor   Levels  Values
Chemist       4  1, 2, 3, 4


Analysis of Variance

Source   DF  Adj SS  Adj MS  F-Value  P-Value
Chemist   3  1.0446  0.3482     3.25    0.081
Error     8  0.8582  0.1073
Total    11  1.9028
Model Summary

       S    R-sq  R-sq(adj)  R-sq(pred)
0.327529  54.90%     37.98%       0.00%


Means

Chemist  N     Mean   StDev        95% CI
1        3   84.470   0.481  ( 84.034,  84.906)
2        3  85.0533  0.1504  (84.6173, 85.4894)
3        3   84.787   0.345  ( 84.351,  85.223)
4        3   84.283   0.236  ( 83.847,  84.719)

Pooled StDev = 0.327529

F0.05,3,8 =  4.066           for α = 0.05

Then   F0  (3.25 ) < F0.05,3,8  ( 4.066 )
 So we will accept the null hypnosis Ho and there is no difference at α = 0.05






b) Analyze the residuals from this experiment.





Compute the residuals for each observation:
eij  = yij  - 𝑦 ̅i.

ӯ1.
ӯ2.
ӯ3.
ӯ4.
84.47
85.05333
84.78667
84.28333

1
residuals
2
residuals
3
residuals
4
residuals
1
84.99
0.52
85.15
0.096667
84.72
-0.06667
84.2
-0.08333
2
84.04
-0.43
85.13
0.076667
84.48
-0.30667
84.1
-0.18333
3
84.38
-0.09
84.88
-0.17333
85.16
0.373333
84.55
0.266667

The central values closely fit a straight line, the errors are normally distributed and the model is adequate.





c)  If chemist 2 is a new employee, construct a meaningful set of orthogonal contrasts that might have been useful at the start of the experiment.

Orthogonal contrasts = a - 1 = 3



Chemist 2 is a new employee

C1  :   µ2 = (µ+ µ3+ µ)         
C2  :     µ1 +µ= µ4         
C3  :   µ= µ4         

Hypothesis Contrast:

Chemist
Totals
C1
C2
C3
1
253.41
1
1
0
2
255.16
-3
0
0
3
254.36
1
1
1
4
252.85
1
-2
-1
-4.86
2.07
1.51

 At 5% significance level













 the SSC has only one degree of freedom, we know that SS= MSC.

The relevant test statistics:












the critical value is F0.05,3,11 = 3.59.
C1 is the only contrast test statistic that is greater than the critical value.
So, the only contrast that useful at the start of the test at a 5% significance level is contrast 1.


-----------------------------------------------------------