Technology

[Technology][grids]

Mobiles and Laptops

[Mobiles and Laptops][grids]

Management

[Management][grids]

Education

[Education][grids]

Lifestyle

[Lifestyle][grids]

Currencies and Gold

[Currencies and Gold][grids]

Other Articles

[Other Articles][grids]

Travel

[Travel][grids]

Point and Interval Estimates & Hypothesis Testing - Problems solution



Related image
      1.            The following table shows the order size in dollars of 30 home shoppers.
_______________________________________
75   109   32    54    121    80     96   47    67    115 
29    70    89   100     48    40   137   75    39      88 
99   140   112    87   122   75     54    92   89    153
_______________________________________
a.       Construct a 95 percent confidence interval around the mean.

Solution:
a)
For n= 30 , the sample acts as Normal distribution (central limit Theorem)
n ≥ 30
Using Minitab


Variable
N
N*
Mean
SE Mean
StDev
Min
Q1
Median
Q3
Max
C1
30
0
84.47
6.02
32.98
29
54
87.5
109.75
153

The Sample behaves as normally distributed, the population standard deviation (σ) is not known and the sample size is large (n ≥ 30) so I must use z-distribution.
n = 30
x̅ = 84.47
s = 32.98

image.png
image.png

zα/2 = 1.96         for 95% confidence level
σx̅  = s/n^0.5 =  6.021

  Upper limit = x+ zα/2 Ïƒ
 Lower limit    = x - zα/2 Ïƒ
  Upper Limit = x̅ + 1.96 Ïƒx̅  = 84.47+ 1.96  x 6.021 =  96.271  $  
   Lower Limit    =  - 1.96 Ïƒx̅  = 84.47 - 1.96 x 6.021 = 72.668  $

Φ ( (  x- zα/2 Ïƒ) < ( x+ zα/2 Ïƒ ) , xσ) =1 - Î±
Φ (72.668< x < 92.271) = 1-0.05=0.95

b)  The point estimate for the mean of the population: 
       x̅ = 84.47

-------------------------------------------------------------------


       2.            The following sample of size 11 was taken from a population that is normally distributed:
121    136    102    115    126    106    115    132    125    108    130
Construct a 98 percent confidence interval around the mean

Solution:
Using Minitab

Variable
N
N*
Mean
SE Mean
StDev
Min
Q1
Median
Q3
Max
C1
11
0
119.64
3.4
11.29
102
108
121
130
136

The population is normally distributed, the population standard deviation (σ) is not known and the sample size is small (n < 30) so I must use t-distribution.

n = 11       
DF = n-1 = 10          
s = 11.29

image.png

image.png

tα/2 2.764        for 98% confidence level 

σx̅  = s/n^0.5  = 3.404

     Upper limit = + tα/2 Ïƒ
      Lower limit    =  tα/2 Ïƒ
       Upper Limit = x̅ + 2.764 Ïƒx̅  = 119.64 + 2.764 x 3.404 =  129.048
       Lower Limit    = x̅ - 2.764 Ïƒ  = 119.64 - 2.764 x 3.404 = 110.231

        Φ ( (  - tα/2 Ïƒ) < < ( + tα/2 Ïƒ ) Ïƒ) =1 - Î±
        Φ (110.231< x < 129.048) = 1-0.02=0.98

  
-------------------------------------------------------------------
  
       3.            A student organization at a small business college claims that the average class size is greater than 35 students. Test this claim at Î± = 0.02, using the following sample of class size:
42    28    36    47    35    41    33    30    39    48
Assume the population is normally distributed and that Ïƒ is unknown.

Solution:
The Hypotheses are:

H0  :   µ = 35
H1  :   µ > 35



Variable
N
N*
Mean
SE Mean
StDev
Min
Q1
Median
Q3
Max
C1
10
0
37.9
2.13
6.74
28
32.25
37.5
43.25
48


The population is normally distributed, the population standard deviation (σ) is not known and the sample size is small (n < 30) so I must use t-distribution.

image.png
image.png

DF = n-1 = 9

x̅ = 37.9
s = 6.74

tα =  2.398   for 98% confidence level ( Î± = 0.02 )      - One tail test

σx̅  =s/n^0.5 = 2.1313

image.png

The acceptance interval for H0 is given by:
P (  –∞ < t < tα  ) =1- α

P (  –∞ < t < 2.398  ) =0.98

Then t0 < t Î±    , and in the H0 Acceptance Interval so we do not reject Hand can say that  the average class size is 35 students.

  
-------------------------------------------------------------------

      4.            The tensile strength of a fiber used in manufacturing cloth is of interest to the purchaser.  Previous experience indicates that the standard deviation of tensile strength is 2 psi. A random sample of eight fiber specimens is selected, and the average tensile strength is found to be 127 psi.
a.       Test the hypothesis that the mean tensile strength equals 125 psi versus the alternative that the mean exceeds 125 psi. Use a = 0.05
b.       What is the P-value for this test?
c.       Discuss why a one-sided alternative was chosen in part (a).
d.       Construct a 95% lower confidence interval on the mean tensile strength.

Solution:
σ =2 Psi
x̅ = 127
n=8
a)
The Hypotheses are:

H0  :   µ0 = 125
H1  :   µ1 > 125

This will be One tail test
          α = 0.05
The population standard deviation (σ) is known and the sample size is small (n < 30) so I must use Z-distribution.
image.png
image.png

zα =  1.645    for 95% confidence level ( Î± = 0.05 )      - One tail test
image.png
image.png

The acceptance interval for H0 is given by:
 P (  –∞ < z < zα  ) =1- Î±
P (  –∞ < z < 1.645) =0.95

Then z0 > z Î±    , and in the H0 rejection Interval so we reject H0, and accept H1 (the mean greater than 125 psi) .

 b)
The P-value would be computed using only the area in the upper tail of the standard normal distribution, because the alternative hypothesis is one-sided.

P = 1- Î¦(Z0) =  1- Î¦ (2.8284)  = 1- 0.9977 = 0.002339
c)
 one-sided alternative was chosen because the experimenter seeks to have an average tensile strength greater than in the null Hypothesis.

d)
zα =  1.645    for 95% confidence level ( Î± = 0.05 )      - One tail test
image.png

 Lower limit    =     - zα Ïƒ

  Lower Limit =  - 1.645 Ïƒx̅  = 127 - 1.645 x 0.7071= 125.836

 ≥ 125.836               ,    Should be grated than 125.836

-------------------------------------------------------------------